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1 Abstract
During the last years, the autonomous vehicles have gained a considerable interest among re-
searchers. For example, such robots as self-driving cars, self-flying planes, etc., would pave the
way for automation of our day-to-day activities and would assist us in accomplishing tasks,
which humans are not able to complete on their own and thus, such workforce will become
necessary if we want our societies to progress.

Moreover, in order to resolve problems related to the sustainable development, which is vi-
tal to the survival of our society in this fast-changing environment, some scientific researchers
have decided to manage projects, which are focused on the exploitation of autonomous vehicles
so that they could keep in check the climate change and complete the complex tasks, which
either cannot be completed by humans, or require significant costs in terms of finance and
human effort, if autonomous vehicles do not engage in these tasks.

Furthermore, my supervisor Lionel Lapierre decided to start a project two years ago, which
is supported financially by European Regional Development Fund and is called LEZ 2020. The
aim of this project is to develop the CUBE robot, which will build autonomously a map of the
LEZ source, that supplies the whole city of Montpellier in the south of France with drinking
water. This project is going to bring significant changes to the karst exploration in the future
in case of its success. Henceforth, the objective of my research has been to bring solutions,
which will accelerate the development of the CUBE robot.

To be more precise, my elaborated solutions cover such topics as the passage from overactutated
to underactuated robotics systems, the saturation and reactivity of the robot’s actuators and
the selection criteria for motion control.

(a) CUBE robot (b) LEZ source

Figure 1: Karst exploration
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2 Introduction

2.1 Context of the research
Since the industrial revolution in Western Europe the automation of tasks has become an ir-
replaceable part of our society. If it had not been for an automated process, the industrial
progress, from which our society has been profiting considerably, would not even have existed
nowadays. It is useful to note that the first automated industrial process was developed by
Oliver Evans in 17851 and in fact, it was an automated floor mill. Since then, in order to
prosper in the fast-changing world the industrialists has been trying to implement automation
so that they could reduce the costs by decreasing the human labour at their disposal and ac-
celerate the production of goods, which has been vital for a rising demand.

Moreover, we are all aware that the climate change has become a crucial issue for the modern
world. Unfortunately, it has raised some challenges, that are going to make us change our
everyday habits and to motivate us to find innovative solutions to these problems. That is
where the use of autonomous vehicles has become quite important, as it is clear that by using
only the human labour we are going to accomplish almost nothing.

Furthermore, the autonomous vehicles are going to help us to study the real pace at which
our climate changes and how it actually changes. For example, as we all know the drinking
water is important for our everyday lives and its shortage has become a threatening issue to
our human existence. If we take a look at the city of Montpellier, located in the south of
France near the Mediterranean Sea, then we can see that the drinking water provided to the
whole city is actually extracted from underground drainage karst systems by the assistance of
underground pumping systems. To be more precise, according to the certain source2, the karst
is the land feature (in other words, the land form), which is formed as a result of dissolution
of the soluble rocks such as limestone, dolomite and gypsum. Usually in order to visualize the
karst structure, we can refer ourselves to the underground caves. That is why we can say that
the city of Montpellier relies heavily in terms of drinking water on the karst structure, e.g.
underground caves, near the source of Lez.

In addition, in order to supply easily the city of Montpellier with drinking water, pumping
systems have been installed in the underground caves near the source of Lez. However, the
climate change has produced a considerable impact on the depth, at which the drinking water
flows in underground caves, and thus, because of the increase of such depth the city has decided
to install another pumping system at a deeper level in order to satisfy its need in terms of drink-
ing water. Unfortunately, as the climate change is not going to stop in the near future, the level
of the underground drinking water is predicted to go deeper in the karst structure, which will
in turn require another pumping system due to the lack of alternative. Actually such ground-

1https://en.wikipedia.org/wiki/Automation
2https://en.wikipedia.org/wiki/Karst
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water resource is called Karst aquifer3 and is a productive source of drinking water. However,
karst aquifers are vulnerable to the contamination, which is why the supervision of the water’s
quality in karst aquifers must be put in place as this source provides with drinking water the
whole city of Montpellier.

That is why the Karst exploration has become the main challenge of the project LEZ 2020,
on which I have been concentrated during my research internship. Moreover, the principal ob-
jective of the project has been to develop the Underwater Autonomous Vehicle (UAV), called
CUBE, which with the assistance of the motion control, conceived by the team of researchers,
of its eight motors is going to navigate in the underground caves on its own and draw a map of
the whole karst structure near the source of Lez by exploiting sensors installed in this robotic
system.

Last but not least, another objective for the robotic system CUBE will be to take a sam-
ple of drinking water and analyze its quality during its passage through the karst aquifers.
Even though the karst aquifers are the productive source of the drinking water, they are vul-
nerable to the contamination, which can in turn lead to the disastrous consequences for those,
who consume such water. That is why the quality of the drinking water is the critical issue for
the city of Montpellier, which relies heavily on karst aquifers in terms of drinking water supply.
To further strengthen the point of the last objective for the CUBE robot, the geologists have
analyzed during the years the quality of the drinking water in the karst aquifers near the source
of Lez and have stumbled upon the chemical elements such as plastic present in the drinking
water. In spite of the fact that such plastic is present in the drinking water of the karst aquifers
in negligible amounts and thus, such drinking water can be consumed, the level of plastic in the
drinking water is predicted to rise due to the pollution of the environment and if the pollution
continues at its usual pace and the level of plastic increases considerably, the French authorities
of the city of Montpellier will be obliged to install filters near the source of Lez in order to
provide the whole city with the water of standard quality. That is why the mapping of the karst
aquifers and the analysis of the quality of the drinking water are two pillars of the research
project Lez 2020. The success of this project will provide the French authorities with different
sorts of valuable information such as the potential of the karst aquifers in terms of the drinking
water supply, the evolution of the level of the water in the underground caves and the evolution
of the quality of the drinking water.

2.2 Summary
In this report we are going to analyze the research internship, that I have carried out during
4 months in Laboratoire d’Informatique, de Robotique et de Microéléctronque de Montpellier4

(LIRMM) in Montpellier, France, under the supervision of the LIRMM’s assisstant professor
Lionel Lapierre. LIRMM is currently affiliated with the University of Montpellier and CNRS
and is focused on the research in Computer Science, Robotics and Microelectronics. I have

3https://www.usgs.gov/mission-areas/water-resources/science/karst-aquifers
4https://www.lirmm.fr/lirmm-en/
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conducted my research internship in the Robotics department of LIRMM, which is at the mo-
ment composed of four teams: DEXTRER, ICAR, EXPLORE and IDH. During my internship
I have been a member of the team EXPLORE5, which is specialized in the research on Mo-
bile Robotics for environment exploration. The team is focused mainly on the study of the
Underwater Autononomous Vehicles (UAVs) and thus, wants to conceive autonomous robotics
systems, that are able to fulfill complex tasks on their own given the harsh natural constraints
imposed by the aquatic environment and the hardware architecture. In addition, in order to get
acquainted with the practical results, which have been obtained by the team, you can visualize
them on their Youtube channel6.

At the beginning of my research internship I have been presented a notion, which consti-
tutes a backbone of the research core of the team EXPLORE and is called the Path-following
Algorithm. Moreover, according to the paper [1] during the last years the motion control of the
autonomous vehicles has been a huge area of interest for researchers and many improvements
have been made in this area. In order to clearly see what solutions have been proposed for this
area in literature, we can divide all these solutions approximately into three groups as it has
been done in the article [1]:

• Point stabilization

• Trajectory tracking

• Path following

This report will focus only on the first solution, as it is the most recent among all solutions
and is the most promising for the robotics researchers at LIRMM.

After that, I have been studying overactuated and underactuated robotics systems and trying
to propose a solution for motion control, when the overactuated system becomes underactuated
because of the loss of motors due to environment conditions. As a result, I have worked out a
solution, which helps us to point out explicitly the directions, in which our robot can exert a
resulting force. After having elaborated my proper solution, I focused on the selection criteria
for the motion control of UAVs, e.g. the criteria, which determines the feasible directions, in
which the energy consumption will be minimal for the robot.

Moreover, I have decided to analyze the problem of the saturation and reactivity constraints,
which are imposed by the hardware architecture, and to try to propose a solution, which will
satisfy these constraints and minimize the energy consumption at the same time.

5https://www.lirmm.fr/teams-en/EXPLORE-en/
6https://www.youtube.com/channel/UCeKFkZD3DjEZb1ZSRlxN3Kg
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3 Preliminaries

3.1 Presentation of the methods of the motion control
As it has been mentioned above, the solutions proposed in the area of the motion control for
autonomous vehicles can be divided approximately into three groups: point stabilization, tra-
jectory tracking and path-following.

The first solution, which is point stabilization, refers to the method, where given the orien-
tation the main objective is to stabilize the autonomous vehicle at a given point. According
to the paper [1] it becomes quite challenging to use the point stabilization method when we
have nonintegrable constraints and the continuous state-feedback law does not exist, which in
turn does not guarantee stability. In order to resolve such problem, various solutions exploiting
hybrid feedback laws and smooth time-varying control laws have been presented.

Secondly, the trajectory tracking for the motion control refers to the method, where the au-
tonomous vehicle is given a task to track a reference, which is parameterized by the time.
According to the paper [1] the trajectory tracking method has shown pretty good results when
being applied in overactuated robotic systems, e.g. systems where the vehicle has more actua-
tors than state variables. However, the case of underactuated systems, e.g. systems where the
robot has less actuators than state variables, is still a challenging topic for the researchers spe-
cialized in trajectory tracking. The paper [1] states that linearization and feedback linearization
methods have been proposed in order to resolve such challenge.

Finally, the most promising method for the motion control, which has been introduced quite
recently and received less attention than the first two methods, is the path-following. It refers
to the method, where the autonomous vehicle is given a task to converge to and follow the given
path without any temporal restrictions. One of the first promising articles in this area was the
paper [2] released in 1991 by Samson and Ait-Abderrahim, which will be discussed more in the
sections below. Moreover, the application of the path-following method on marine autonomous
vehicles has been developed by Encarnaçao et al. in the article [3]. Encarnaçao et al. have
elaborated with the assistance of the Lyapunov theory the kinematic controller for the marine
autonomous vehicles by assuming that the velocity of the ocean current is known to the robot.
After that, in order to analyze the case when the ocean current is unknown the authors of the
article [3] exploit estimators of the ocean current and modify in turn the kinematic controller.
Finally, by backstepping the kinematics into dynamics they introduce the dynamic controller
for the marine robot and perform the same analysis on the availability of information about
the ocean current to the vehicle.

However, the article of Encarnaçao et al. has only presented results in 2D space and the
expansion to the 3D space is of course much needed. Moreover, the paper does not take into
account the saturation of the actuators, which is always the major problem during the devel-
opment of the autonomous vehicles and thus, this issue must be resolved in order for the robot
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to be put in practice and to bring satisfactory results when trying to complete complex tasks
in the real-world conditions.

3.2 Path-following control design
The following results and notations are based on the paper [4] of Lapierre and Soetanto. The
article takes into account the results obtained in the papers [3] of Encarnaçao et al. and [5] of
Micaelli and Samson.

For the ease of visualization let’s place ourselves in the 2D space and let’s consider the robot
INFANTE AUV (autonomous underwater vehicle) developed by the Institute for Systems and
Robotics (ISR) of Lisbon, Portugal. Actually, this AUV disposes of two identical symmetric
back thrusters. As you can see, this robotic system is clearly underactuated since the lateral
thruster is absent in INFANTE AUV. You can refer to the figure 2a in order to visualize how
INFANTE AUV looks like. Moreover, the thrusters generate a force denoted F along the
longitudinal axis and a torque denoted Γ around its vertical axis.

3.2.1 Notation of the vehicle’s model. Kinematics and dynamics

Even though we consider the autonomous vehicle to be functioning in 3D space, for the sake of
simplicity we suppose that the robot moves in the plane, e.g. the z-component of the coordinates
of the robot’s position is always zero. In the sequel the symbol {A} := {xA,yA, zA} will denote
the reference frame with respect to the origin OA and unit vectors xA,yA, zA. As you can
see on the figure 2b, the kinematic and dynamic equations of the AUV can be expressed with
respect to the universal reference frame {U} and also to the body frame {B}. The point Q
depicted on the figure 2b corresponds to the center of mass of the AUV and we suppose that

(a) INFANTE AUV

(b) AUV’s model

Figure 2
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it coincides with the point OB, the origin of the body frame {B}. Moreover, the coordinates
of the point Q with respect to the universal frame {U} are q = (x, y, 0)T (just remember that
the z-component of the coordinates is always zero). Furthermore, the yaw angle, which defines
the rotation matrix from the frame {B} to the frame {U}, is denoted ψB. Then according to
the paper [4], we denote vt = (u, v, 0)T as the velocity of the point Q in the frame {U} and it
expressed in the coordinates of the body frame {B}. The velocity u is called the surge velocity,
while the velocity v is called the sway velocity. We also assume that the surge velocity u is
never equal to zero. By exploiting the notation above, the following kinematic equations of the
AUV can be deduced:

ẋ = vt cos(ψW )
ẏ = vt sin(ψW )
ψ̇B = r + β̇

(1)

where β = arctan( v
u
) is called the side-slip angle, r = ψ̇B is the angular speed of the robot,

vt = ∥vt∥ =
√
u2 + v2. On the other hand, the dynamic model for the AUV can be expressed

in the following manner:
F = muu̇+ du

0 = mvv̇ +murur + dv

Γ = mrṙ + dr

(2)

The dynamic model above involves the mass and the moment of inertia of the AUV and also
classic hydrodynamic derivatives. For the ease of readability those quantities will not be de-
scribed in this section and you can consult the paper [4] of Lapierre et al. in order to get
explicit physical and mathematical definition of those quantities.

Moreover, we must ask ourselves which quantities the path-following controller must take into
account in order for the vehicle to converge to and follow the path. Firstly, the path-following
controller should compute the distance between the center of mass of the vehicle Q and the
closest point P on the path and secondly, the controller should also compute the angle be-
tween the velocity vector vt and the tangent to the path at the point P . It is clear that the
path-following controller should reduce both these quantities to zero in order to complete the
path-following task.

Henceforth, that is where the notion of the Serret-Frenet frame {F}, which moves along the
path (by the way, this frame is also displayed on the figure 2b) and will be used for the develop-
ment of kinematic model of the AUV. The paper [4] states that the frame {F} will act as a sort
of virtual target vehicle, that will move along the path and will be followed by the real AUV.
However, the origin OF of {F} will be defined in a way different from the one that was described
in the article [5] of Micaelli and Samson and the article [3] of Encarnaçao et al. In fact, in the
articles [5] and [3] OF is the closest point on the path to the vehicle, while in the article [4]
of Lapierre et al. the position of the OF = P will be defined by the convenient path-following
controller. By doing so another parameter for the controller design is added and as a result, we
have an extra degree of freedom. In fact, this technique allows to the authors Lapierre et al.
to remove the strict initial condition constraint, which has been imposed in the papers [5] and
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[3] in order for the path-following controller to be successful. To be more precise, this initial
condition requires the initial position error of the autonomous vehicle to be smaller than the
smallest radius of curvature present in the path. It is clear that this initial condition constraint
is quite restrictive for the real-world environment and fortunately, the authors Lapierre et al.
have succeeded in removing this stringent condition.

With the introduction of the new frame {F}, we thus introduce new notations. The vari-
able s denotes the signed curvilinear abscissa of P = OF along the path. It is clear that the
point Q (the center of mass of the vehicle) can either be expressed in the coordinates of the
frame {U}, which are q = (x, y, 0)T , or in the coordinates of {F}, which are (s1, y1, 0). We
denote ψF as the angle, which defines the rotation matrix from {U} to {F} and we impose
ωF = ψ̇F . Henceforth, we have the following equations:

ωF = ψ̇F = cc(s)ṡ
ċc(s) = gc(s)ṡ

(3)

where cc(s) defines the path curvature and gc(s) = dcc(s)
ds

its derivative. By applying this new
notation, the new kinematic model of the AUV can be written in the frame {F}:

ṡ1 = −ṡ (1 − ccy1) + vt cosψ
ẏ1 = −ccṡs1 + vt sinψ
ψ̇ = ωW − ccṡ

(4)

where the new variables ψ = ψW − ψF and ωW = ψ̇W = r + β̇ are introduced.

3.2.2 Nonlinear kinematic controller of the AUV

In this section and the sections above we will consider the kinematic and dynamic path-following
controllers, which have been developed in the paper [4] of Lapierre et al. Before that we are
going to introduce a new variable:

δ(y1) = −ψa
e2kδy1 − 1
e2kδy1 + 1

which is a desired approach angle of the vehicle and accepts ψa ∈]0, π/2[ and kδ > 0 as input
parameters. This approach angle is quite important for the path-following control, because it
will take part in defining the movements of the vehicle during the path-approach process. The
first step will be to develop the kinematic controller for the AUV by assuming that the surge
velocity u equals to the desired velocity ud > 0. Then by taking into account the newly devel-
oped kinematic controller, the authors Lapierre et al. in the article [4] are going to exploit a
backstepping technique in order to develop nonlinear dynamic controller for the input variables
F (force exerted along the longitudinal axis of the AUV) and Γ (torque generated around the
vertical axis of the AUV) as it has been done in the papers [5] of Micaelli and Samson and [3]
of Encarnaçao et al.
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Let’s consider the first proposition of the article [4], which proposes the nonlinear kinematic
path-following controller of the AUV:

Proposition 1 (Kinematic Controller). Consider the kinematic model of an AUV described in
1 and 4. Let the approach angle δ(y1) be defined as above. Assume that the surge velocity of the
vehicle is such that u = ud > 0 (e.g. always constant). Suppose that the path to be followed is
parameterized by its curvilinear abscissa s, and assume that for each s the variables ψ, s1, y1, cc

are well defined. Then the kinematic control law

Ukin =
{
r = δ̇ − β̇ − k1(ψ − δ) + cc(s)ṡ
ṡ = cosψvt + k2s1

(5)

(where k1, k2 are arbitrary positive constants) drives y1, s1, ψ asymptotically to zero.

Moreover, it is safe to say that if the quantities y1, s1, ψ tend asymptotically to zero, then
the autonomous vehicle will converge to and follow the path.

3.2.3 Nonlinear dynamic controller for the AUV

The kinematic controller defined in the previous section is only appropriate for the kinematic
model of the AUV. So now it is important to take into account the vehicle dynamics in order to
finish the path-following controller, developed in the paper [4] of Lapierre et al. In this section
the backstepping technique is exploited in order to deduce the dynamic controller from the
kinematic controller of the previous section. It is useful to note that in the previous kinematic
controller the total velocity vt(t) depended on the desired surge velocity ud for the speed u(t)
and we assumed that during the whole path-following phase we had u = ud, which is not true
in general. That is why the dynamic controller should guarantee that the quantity u(t) − ud

tends asysmptotically to zero. The following proposition from the paper [4] defines the dynamic
control law for the input variables F and Γ:

Proposition 2 (Dynamic Controller). Consider the kinematic and dynamic models of an AUV
described in 1 and 2, respectively, and the corresponding path-following model in 4. Let the
approach angle δ(y1) be defined as in above and let a desired speed profile ud > umin > 0 for
u(t) be given. Suppose the path to be followed is parameterized by its curvilinear abscissa s,
and assume that for each s the variables ψ, s1, y1, cc, dcc/ds are well defined. Then the dynamic
control law

Udyn =


Γ = mrαr − dr

F = mu (u̇d − k4 (u− ud)) − du

ṡ = cosψvt + k2s1

(6)

where αr = δ̈ − β̈ − (k1 + k3)(ψ̇ − δ̇) − (k5 + k1k3)(ψ − δ) + ccs̈ + dcc

ds
ṡ, the coefficients ki are

arbitrary positive gains, dr and du are sums of hydrodynamic coefficients, drives y1, s1, u−ud, ψ
asymptotically to zero.

In order to prove that the path-following controller actually works and the vehicle really
converges to and follows the path, the authors Lapierre et al. of the paper [4] have performed
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a simulation with given initial conditions for the AUV’s model. As you can see on the figure
3a, the simulation with the initial conditions shows us that the vehicle really converges to and
follows the path. Is is useful to remark that as depicted on the figure 3a the initial position
error of the vehicle does not need to be smaller than the smallest radius of curvature present in
the path in order for the vehicle to complete the path-following task as the contrary has been
required before in the papers [5] of Micaelli and Samson and [3] of Encarnaçao et al.

3.3 Redundant actuation system for an AUV
The following information about results and notations is based on the paper [6] of Lapierre et
al.

3.3.1 Context

The real-world environment in most cases imposes difficult conditions on autonomous vehicles.
Moreover, the reactivity and actuators’ saturation constraints and the minimization of the en-
ergy consumption are ones of the issues, which should be handled by the robotic system if it
wants to not guarantee the successful completion of complex tasks, but also the completion of
them in the best way possible, which is quite important given the fact that the robot’s config-
uration should attract industrial companies in terms of their cost (construction, maintenance,
etc.) and efficiency in order for the vehicle to be constructed in sufficient quantities and dedi-
cated to the society’s needs.

Furthermore, according to the article [6] the robotic system is said to be overactuated (in
other words, redundant), if the number of actuators, that it possesses, is more than six de-
grees of freedom (DOFs) in case the 3D space is considered. As for the 2D space, the robotic
system needs to have more actuators than three DOFs. The reason why the redundancy is
very important for the autonomous systems is that it can be used for simultaneous control of

(a) Path-following simulation (b) Jack system

Figure 3
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several tasks. For example, it can be exploited for the path-following control and the obstacle
avoidance for an AUV in an underwater environment. The pioneering research has been done
by Hanafusa et al. in the paper [11], where the redundancy of the robotic system is exploited
with the usage of Jacobian matrices and inverse kinematics and the order of priority is given
to secondary tasks for robot manipulators.

3.3.2 Redundancy management

For the sake of simplicity let’s place ourselves in the 2D space. The paper [6] uses the Jack
robotic system, an AUV developed by the CISCREA company. As you can see on the figure
3b, the Jack system possesses four actuators, which is more than three degrees of freedom,
and thus, the Jack system is overactuated in the 2D space. Now let’s introduce the following
notation of the paper [6]: FB denotes the generated forces and torques of the vehicle with
respect to the body frame {B}, e.g. FB = [Fu,Fv,Γr]T with the Fu being the surge force, Fv

the sway force and Γr the torque generated around the vertical axis of the vehicle. Moreover,
the four actuators of the Jack system exert four respective forces, which can be expressed in the
following column vector: Fm = [Fm,1,Fm,2,Fm,3,Fm,4]T . Now we would like to build a relation
between FB and Fm. By analyzing the positions [dx,i, dy,i, dz,i, ψm,i]T of each motor depicted
on the figure 3b, the article [6] of Lapierre et al. constructs the following algebraic relation
between FB and Fm:

FB = A · Fm

where the actuation matrix A is a 3 × 4 constant matrix defined by the motor positions
[dx,i, dy,i, dz,i, ψm,i]T . The redundancy management, which is based on this new relation, is
discussed in the following sections and my solution, which generalizes the management of un-
deractuated and overactuated system, is also presented in the sections below.

3.3.3 Saturation management

Even if dynamic path-following controller is well defined for an autonomous vehicle and the
simulations show that this controller works very well in spite of initial conditions, the real world
environment imposes harsh conditions in such way that the development of the path-following
controller is not enough to guarantee the completion of the path-following task. In fact, for
example, if the path-following controller requires one of the motors to exert the force 1000N
and the maximum force that it can exert is in fact 200N , then the path-following control will
fail as the control inputs become saturated. That is why the saturation management is the
crucial issue for the motion control of the robotic systems and it should be handled by any
means necessary in order to guarantee the completion of the path-following task.

Actually the paper [6] of Lapierre et al. proposes a solution to resolve such issue. You can see
on the figure 4 the relation between the motor characteristic cm,i and the exerted force Fm,i

for the Jack system. In fact, in reality the exerted force of the motor is commanded by its
characteristic, e.g. in order for the motor to induce a force we should communicate to it a
corresponding characteristic. As it can be seen on the figure 4, the Dead zone refers to certain
characteristics, which does not induce any force for the corresponding motor. Henceforth, in
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order to minimize the energy consumption the Dead zone should be avoided for the robotic
system and it is the part of the saturation problem. On the figure 4 you can see that the set
[cDZ−

m , cDZ+
m ] corresponds to the characteristic inputs, which do not induce any force, and thus

the corresponding quantities FDZ+
m and FDZ−

m are called the minimal attainable positive thrust
and maximal negative thrust, respectively. Moreover, Fmax+

m and Fmax−
m denote the maximum

positive thrust and minimum one, respectively.

In paper [6] of Lapierre et al. in order to resolve the issue of the dead zone two different
solutions are proposed:

• Contraction of the dead zone: the characteristic inputs corresponding to the dead zone are
made inaccessible and in such, the dead zone is truly avoided. However, such behaviour
provokes oscillatory trend in characteristic inputs, inducing useless motor fatigue and the
performance of the response depends on the motor reactivity.

• Compensation of the dead zone is achieved using a common motor regime applied to all
horizontal actuators. On the contrary to the previous solution the oscillatory behaviour
is removed

To get acquainted more in detail with two solutions above, I invite you to consult the paper
[6] of Lapierre et al.

Figure 4: Relation between the motor characteristic and the exerted force
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4 Obtained results

4.1 Generalization of the actuation management
Let’s consider the overactuated system with the Jack system of the previous section, which has
4 motors. The paper [6] of Lapierre et al. on redundant actuation systems studies the problem
of redundancy management with an actuation matrix A, which has a full rank. Now we would
like to analyze the problem, where the action matrix A does not have a full rank in case one of
our motors does not function anymore or some motors point in the same direction. Formally
the problem of control can be presented as

FB = A · Fm

where FB = [Fu, Fv,Γr]T (the generated forces and torques of the vehicle with respect to the
body frame {B}) and Fm = [Fm,1, Fm,2, Fm,3, Fm,4]T (the exerted forces of the motors) and A
is a 3 × 4 actuation matrix. The notation is the same as in the previous section.

In case the actuation matrix A does not have a maximal rank, then for an FB there exists
Fm such that FB = A ·Fm if and only if FB ∈ range(A), where range(A) is an image of matrix
A. Let’s suppose in following sections that rank(A) = 2. Then by the Rank-nullity theorem
we have that dim(Ker(A)) = 2. It is clear that not all values of FB can be achieved in our
case as the actuation matrix A is not of a maximal rank. Then the set of possible values of
FB can be achieved through the computation of the basis of the range of the matrix A. By
the Gram-Schmidt process each finite basis in an euclidian space can be converted to the new
orthonormal basis. Thus, let’s suppose that we have the orthonormal basis B = (e1, e2) of the
range of A. Then the set of all possible values of FB is range(A) = {λ ·e1 +µ ·e2 : (λ, µ) ∈ R2}.
By doing so we get the constraints on the values of FB. Therefore, the set of all values of
the desired resulting actions Fd

B must be the vector subspace range(A). Even if A is not a
full-rank matrix, it always has a unique Moore-Penrose inverse A+ (for more information you
can refer to the following source7). After that according to the same source we can conclude
that range(A) = ker(I − A · A+) = {y = (A · A+) · y : y ∈ R3}, because I − A · A+ is the
orthogonal projector onto the kernel of AT and we know that ker(AT )⊥ = range(A)

To prove such property, firstly, the Moore-Penrose inverse A+ can be computed through the rank
decomposition of the matrix A. As rank(A) = 2, then we can compute the full-rank matrices B
and C of sizes 3×2 and 2×4 respectively such that A = B·C and in this case, the pseudo-inverses
B+ and C+ can be computed through the well-determined formula, e.g. B+ = (BTB)−1BT

and C+ = CT (CCT )−1. Thus, we have that A+ = C+ ·B+. On the other hand, I−A ·A+ is an
orthogonal projector on ker(AT ) and thus, ker(I −A ·A+) = ker(AT )⊥ = range(A). Then we
consider only the desired resulting actions Fd

B, which satisfy the equation (A · A+) · Fd
B = Fd

B.
Thus, we get the new formulation of constraints on the values of Fd

B.

Now let’s take the desired resulting action Fd
B satisfying the equation (A ·A+) · Fd

B = Fd
B. The

7https://en.wikipedia.org/wiki/Moore-Penrose_inverse
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main objective here is to compute the motor action Fm satisfying the equation Fd
B = A · Fm.

Then the solution8 of minimum norm to this equation is Fm = A+ · Fd
B and the set of all

solutions to the main equation is {A+ · Fd
B + [I − A+ · A]ω : ω ∈ R4}, where I − A+ · A is an

orthogonal projector on ker(A). We can easily verify that for all ω ∈ R4,

A · (A+ · Fd
B + [I − A+ · A]ω) = (A · A+) · Fd

B + (A− A · A+ · A)ω = Fd
B + (A− A)ω = Fd

B

On the other hand, as dim(ker(A)) = 2 we can write down the set of all solutions to the main
equation in an equivalent form, which is

A+ · Fd
B + λ · r1 + µ · r2 =

[
A+, r1, r2

]
·

 Fd
B

λ
µ


where (r1, r2) is an orthonormal basis of ker(A) and (λ, µ) ∈ R2.

This section actually shows that the result for the redundancy management announced in
the paper [6] of Lapierre et al. can be actually generalized to underactuated robotic systems
by taking into account the additional constraint on the set of the possible values for the desired
resulting force vector Fd

B

4.1.1 Example in 2D

Let’s suppose that we have the CUBE robot in 2D, e.g. we have four actuators, and let’s
analyze the following configuration for the actuation matrix A: 1 1 1 1

0 0 0 0
−1 1 −1 1


Then the set of the desired resulting actions Fd

B must satisfy the following constraint:

(I − A · A+) · Fd
B =

0 0 0
0 1 0
0 0 0

 · Fd
B = 0

and given the fact that Fd
B = [Fd

u,Fd
v,Γd

r ]T , then Fd
B must satisfy the constraint : Fd

v = 0
corresponding to the null sway force.

In general, if the actuation matrix A of size 3 × n does not have a maximal rank and is
not null, e.g. 0 < rank(A) < 3, then as I−A ·A+ is the orthogonal projector onto ker(AT ) and
dim(ker(AT )) = dim(range(A)⊥) = 3−rank(A) ∈ {1, 2} by the rank−nullity theorem, by the
spectral theorem there exists an orthogonal matrix P of size 3 such that I−A ·A+ = P T ·D ·P ,

8https://en.wikipedia.org/wiki/Moore-Penrose_inverse
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where D = diag( 1, ..., 1︸ ︷︷ ︸
3−rank(A)

, 0, ..., 0). Henceforth, we get the equivalent formulation of the con-

straint: P T ·D ·P ·Fd
B = 0, which is equivalent to D ·P ·Fd

B = 0 by multiplying P on the left by
both sides. The new vector P · Fd

B gives the change of coordinates for the forces in our system
with each coordinate being the linear combination of the forces Fu,Fv and Γr. Moreover, with
P being an orthogonal matrix the norm of the resulting forces is preserved after the change of
coordinates, e.g. ||P · Fd

B|| = ||Fd
B||. Then the equation D · P · Fd

B = 0 gives us 3 − rank(A)
linearly independent combinations of the forces Fu,Fv and Γr, which are equal to zero. Thus,
by doing so we get the equivalent set of constraints on the desired resulting actions for our
system and moreover, we have explicitly deduced 3 − rank(A) directions in which the resulting
force cannot be exerted. Finally, this knowledge of impossible dynamic directions will give us
an important hint for the path-following control.

Now let’s return to our example for the actuation matrix A. Actually the robotic system
is said to be redundant if and only if the actuation matrix A have maximal rank. In our case,
only the force in the v direction cannot be exerted, which means that our system is underactu-
ated and we can still exert the forces Fu and Γr. We can trace the parallel with the unicycle
robot, discussed in the paper [1] of Lapierre et al. and which functioned in such way that the
sway velocity v was always zero due to the friction constraint and thus, the sway force Fv was
always zero, and deduce the dynamic and kinematic control for the CUBE robot.

Moreover, if rank(A) = 1, then by performing the process described above we can prove that
the robot is able to move only in one direction, which is quite restrictive for the path-following
problem. Henceforth, we can confirm that the minimal rank of the actuation matrix A, for
which we can guarantee the satisfaction of the path-following problem in the 2D space, is 2. It
is useful to note that this case can be generalized in 2D space to the actuation matrix A of size
3 × n, where n ≥ 2 is the number of actuators of our robot.

4.1.2 Case 3D

Let’s refer again to the CUBE robot in 3D space. As it has been shown in the previous
section, by considering the actuation matrix of size 6 × n, where n ≥ 3 is the number of
actuators in our system, there exists an orthogonal matrix P of size 6 such that the set of the
desired resulting actions Fd

B is represented by the linear system of equations: D · P · Fd
B = 0,

where D = diag( 1, ..., 1︸ ︷︷ ︸
6−rank(A)

, 0, ..., 0). As a result, we have 6 − rank(A) linearly independent

combinations of the forces Fu,Fv,Fw,Γr,Γp,Γq, which must be equal to zero. Thus, we get in
explicit manner 6−rank(A) directions in which the resulting force cannot be exerted. It is safe
to say that our system must have at least three degrees of freedom in order to guarantee the
path-following constraint. Then we can suppose that 3 ≤ rank(A) ≤ 6. If rank(A) > 3, then
the path-following property can be satisfied and the results of the previous papers of Lapierre
et al. can be exploited in this case. In case we have rank(A) = 2, then our system will be
able to move only in a certain plan defined by two exerting forces, which are given by the
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constraints above. Moreover, if rank(A) = 1, then our robot will move only along a certain
line in the space . As for the case when rank(A) = 3, we can deduce an example, where we
can only exert torques Γr,Γp,Γq and thus, the robot becomes stationary. That is why the case
when rank(A) = 3 should be considered in detail and we must analyze three generated possible
directions, in which the vehicle can exert a resulting force, and conclude if the robotic system
stays stationary or not according to these directions.

4.2 Selection criteria
Given the directions, in which our system can move, we now would like to determine if our
system is well-posed, e.g. makes sense in the real life in terms of energy consumption, etc. For
that let’s consider a 2D case, where the actuation matrix A is 1 1 1 1

10−3 0 0 0
−1 1 −1 1


Then it is clear in this case that exerting a force in v⃗ direction costs too much in terms of energy
and it would be disastrous to implement a path-following algorithm, which uses a non-zero force
Fv. That is why in this example the path-following algorithm must use only the forces Fu and
Γr, which is possible given to the recent papers.

4.2.1 First approach

In general, given the actuation matrix A, we have rank(A) dynamic directions, in which our
system can move. Moreover, these dynamic forces are linearly independent linear combinations
of the initial force vectors. In order to estimate the cost of each direction in terms of energy
consumption, the first approach to do so would be to refer ourselves to the fact that there exists
an orthogonal matrix P of size 3 or 6 such that D·P ·Fd

B = 0, where D = diag( 1, ..., 1︸ ︷︷ ︸
n−rank(A)

, 0, ..., 0),

where n is 3 or 6 depending on the dimension of our system. It is useful to note that Fd
B = A·Fd

m,
then we have D · P · A · Fd

m = 0. After having computed P · A, we extract rank(A) last lines
of such matrix and we compute an euclidian norm of each line which will refer to the "energy"
cost for each direction and such costs will be used for the comparison of the directions in terms
of energy consumption.

4.2.2 Second approach

Let’s place ourselves in a 2D example, where an actuation matrix A is 1 1 1 1
10−4 0 0 0
−1 1 −1 1


As it can be seen, the actuation matrix A is a full-rank matrix. Then the optimal solution Fd

m in
terms of energy consumption is A+ · Fd

B. We then can compute the cost of energy consumption
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for each force Fu,Fv,Γr from the Moore-Penrose pseudo-inverse A+. For example, the cost of
the force Fu is c(Fu) = 0, 6, the cost of Fv is c(Fv) = 14000 and the cost of Γr is c(Γr) = 0, 6.
Henceforth, exert a force in the v⃗ is very costly and must always be avoided in a path-following
algorithm, giving priority to the directions u⃗ and r⃗. To sum up, the problem is not well-posed
and such configuration of actuators must be modified.

On the other hand, we also have in general A+ · Fd
B = A+ · A · Fd

m. As the matrix A+ · A
is an orthogonal projector onto the range of AT and rank(AT ) = rank(A) = 3, there exists an
orthogonal matrix Q of size 4 such that A+ · A = QT · diag(0, 1, 1, 1) · Q. In our example, we
have that the matrix Q is

−9.8 · 10−18 0.7071 −1.7 · 10−16 −0.7071
−0.5395 0.3566 −0.6472 0.3566
0.8178 0.3566 −0.2772 0.3566
0.2002 −0.4956 −0.6845 0.4956


Henceforth, we get that

A+·Fd
B = A+·A·Fd

m = QT ·diag(0, 1, 1, 1)·Q·Fd
m =


0 −0.5395 0.8178 0.2002
0 0.3566 0.3566 −0.4956
0 −0.6472 −0.2772 −0.6845
0 0.3566 0.3566 0.4956

·Q·Fd
m = V ·Q·Fd

m

Then the first element of Q · Fd
m does not give any contribution to the problem as the first

column of the matrix V is zero. The first element in Q · Fd
m refers to the direction formed

by linear combination of the actuator forces and this direction will not give any gain to our
path-following problem and will be omitted in A+ · Fd

B, which is a solution of a minimum norm
for the path-following problem. Given the fact that A+ · Fd

B is a solution of minimum norm
for the path-following problem, it will eradicate the linear combinations of the actuator forces,
which are useless to our problem.

4.2.3 Final approach: Eigen values approach

Let’s consider the symmetric matrix A × AT . By supposing that A is of maximal rank,
e.g. its rows are linearly independent, then the matrix A × AT is invertible. Moreover, by
the spectral theorem there exists an orthogonal matrix V of size n, which is 3 or 6 depend-
ing on the dimension of our space, and a diagonal matrix D = diag(λ1, ..., λn) such that
A× AT = V ×D × V T with λi ̸= 0 given that the matrix A× AT is invertible. It is useful to
note that the columns vi of the matrix V refer to the unitary eigen vectors with eigen value
λi, then let’s denote V = (v1, ..., vn). Furthermore, the solution to the path-following problem
with minimum energy consumption is Fd

m = A+ × Fd
B and A+ = AT × (A × AT )−1 given

the fact that A has linearly independent rows. Henceforth, Fd
m = AT × (A × AT )−1 × Fd

B =
AT ×V×D−1×V T ×Fd

B = AT ×V×diag(λ−1
1 , ..., λ−1

n )×(Fd
B)Base(v1,...,vn), where (Fd

B)Base(v1,...,vn) is
coordinates of Fd

B in the base (v1, ..., vn). By denoting A = (a1, ..., am) with ai being n×1 vector
column and referring to the force Fi

m, we have the following result: AT × V = (< ai, vj >)i,j,
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where each line refers to the coordinates of ai in the base (v1, ..., vn). Finally, we get that
Fd

m = (< ai, vj > ×λ−1
j )i,j × (Fd

B)Base(v1,...,vn). In order to compute the cost of each direction
given by (Fd

B)Base(v1,...,vn), we just compute the euclidian norm of each column of the matrix
(< ai, vj > ×λ−1

j )i,j, which is proportional to the quantities λ−1
j given that by the Cauchy-

Schwarz inequality we have for all j, ∑m
i=1

<ai,vj>2

λ2
j

≤ ∑m
i=1

||ai||2||vj ||2
λ2

j
= 1

λ2
j

∑m
i=1 ||ai||2. Then we

note that these maximum bounds can be compared using the eigen values λj, which will give
an estimation of the cost of each direction of (Fd

B)Base(v1,...,vn). Henceforth, we can conclude
that infinitely small values of λj will engender considerable costs for certain directions. By
doing so, we eliminate the directions, which have infinitely high costs. We must also note
that the newly generated directions are already orthogonal, because the new basis is orthonor-
mal, and thus we do not need to search for the directions orthogonal to the expensive directions.

To sum up, it is sufficient to compute the eigen values and the corresponding eigen vectors
of the full-rank symmetric matrix A×AT . Then we eliminate the eigen vectors corresponding
to infinitely small eigen values and the new path-following algorithm will be based on the eigen
vectors, which were spared after this process.

4.3 Saturation of the actuators
As it has been stated before the issue of the actuators saturation must be resolved by any
means necessary in order to guarantee the completion of the path-following task and minimize
the energy consumption.

In this section we will suppose that the actuation matrix A is full-rank. It is important to
note that in real life the motors placed on the robot possess a maximum capacity, which in
turn will place a certain limitation on the path-following algorithm. Moreover, we must not
forget the notion of the Dead Zone, which means that there is the minimum resulting force
to be exerted in order to make robot move. Henceforth, the set of all possible values for Fm

is of a form I1 × ... × Im with Ii = [F−
i,min;F−

i,max] ∪ [F+
i,min;F+

i,max]. Then we can conclude
that the set of values of Fm is union of product of compact real intervals. As a result, the
set of the possible values for the Fm is ⋃2m

i=1 Ki, where Ki is a product of compact intervals.
Then the possible values for the FB is ⋃2m

i=1 A · Ki, where A · Ki = {A · x;x ∈ Ki}, which in
turn is a compact and convex set as an image of the compact convex set Ki by linear application.

Let’s imagine that the robot is following a path using the path-following algorithm. Then
in the process we are given a certain desired resulting force Fd

B and thus, must generate a
certain actuation force Fd

m by taking into account the limitations of the actuators, i.e. the
generated Fd

m must belong to the set I1 × ...× Im. In order to simplify the computations, let’s
place ourselves in the 2D space, i.e. n = 3. Then as our system is redundant, the number of the
actuators m is bigger than n. Moreover, as the matrix A is full-rank, then by the rank-nullity
theorem we have that dim(Ker(A)) = m−rank(A) = m−3. Then be noting that I−A+ ·A is
the orthogonal projector onto ker(A), given the desired resulting force Fd

B a feasible actuation
force Fd

m will be of the form A+ · Fd
B + (I − A+ · A) · x ∈ I1 × ... × Im with x ∈ Rm. Then
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the main problem is to find a certain vector x ∈ Rm so that the desired actuation force Fd
m

becomes feasible, i.e. belongs to the set I1 × ... × Im. If A+ · Fd
B already belongs to the set

I1 × ... × Im then our problem is resolved. In the other case, we must find a vector x ∈ Rm,
which satisfies the constraint: A+ · Fd

B + (I −A+ ·A) · x ∈ I1 × ...× Im, which is equivalent to
find a vector in the set Ker(A) ∩ (J1 × ...Jm), where J1 × ...× Jm = (I1 × ...× Im) −A+ · Fd

B =
(I1 − {A+ · FB}1) × ... × (Im − {A+ · FB}m), given the fact that the matrix I − A+ · A is an
orthogonal projector onto Ker(A).

From now on we suppose that Fd
B is fixed and that A+ ·Fd

B does not belong to the set I1×...×Im.
Then our main objective is to find a vector r ∈ Rm such that A ·r = 0 and r ∈ J1 × ...×Jm and
thus, our final solution will be Fd

m = A+·Fd
B+r with an energy norm ||Fd

m||2 = ||A+·Fd
B||2+||r||2.

Henceforth, in order to satisfy a minimum energy constraint we are interested in finding a fea-
sible solution r, which has a minimum norm.

Moreover, in order to satisfy the minimize the energy consumption, we should solve the follow-
ing quadratic programming (QP) problem:

min
r

∥A+ · Fd
B + r∥2

s.t. r ∈ J1 × ...× Jm

A · r = 0
(7)

What we have in the equation above is not formally the quadratic programming problem, be-
cause the set over which we want to minimize our target function is Ker(A) ∩J1 × ...×Jm and
it is not convex. In other words, what we want to get in the end is the convex optimization
problem, i.e. the minimization of a convex function over the convex set. On the other hand, the
function which we want to minimize is ∥A+ ·Fd

B +r∥2 = ⟨A+ ·Fd
B +r, A+ ·Fd

B +r⟩ = ∥A+ ·Fd
B∥2 +

∥r∥2 + 2⟨A+ · Fd
B, r⟩ = ∥A+ · Fd

B∥2 + rT · r+ (2A+ · Fd
B)T · r = ∥A+ · Fd

B∥2 + (1/2)rT ·P · r+ qT · r
with q = 2A+ · Fd

B and P = 2 · Im with Im being an identity matrix of size m. As the quantity
A+ · Fd

B is fixed, then it is equivalent to minimize the function r 7→ (1/2)rT · P · r + qT · r.
Furthermore, it is already useful to note that the function r 7→ ∥A+ · Fd

B + r∥2 is not only
convex (which implies that any local minimum, if it exists, is a global minimum), but also
strictly convex, i.e. it possesses at most one global minimum. Henceforth, the function
r 7→ (1/2)rT · P · r + qT · r = ∥A+ · Fd

B + r∥2 − ∥A+ · Fd
B∥2 is also strictly convex given

that the quantity A+ · Fd
B is fixed. On the contrary, as it has been mentioned above, the set

ker(A) ∩ J1 × ... × Jm over which we want to minimize is not convex. But we already know
that J1 × ...× Jm = I1 × ...× Im −A+ · Fd

B = ⋃2m

i=1 Ki −A+ · Fd
B = ⋃2m

i=1(Ki −A+ · Fd
B), where

the Ki is cartesian product of compact real intervals and the sets Ki are disjoint. By posing
Ki − A+ · Fd

B = Ci for all i, where Ci is also a cartesian product of compact real intervals and
the sets Ci are also disjoint.

Now let’s fix Ci. As Ci is a cartesian product of compact intervals, then there exists a matrix
Gi of size 2m×m and a vector bi of R2m such that r ∈ Ci is equivalent to Gi · r ≤ bi. Then we
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can define formally the following quadratic programming subproblem (called QP (i)), which is:

min
r

(1/2)rT · P · r + qT · r

s.t. Gi · r ≤ bi

A · r = 0
(8)

Moreover, in the equation above the set over which we want to minimize our strictly con-
vex target function is Ker(A) ∩ Ci, which is convex compact. Then as the target function
r 7→ (1/2)rT · P · r + qT · r is continuous, then it reaches its bounds over the set Ker(A) ∩ Ci.
Henceforth, the subroblem QP(i) will have a solution (which will be unique if it exists as the
target function is strictly convex) if and only if the set Ker(A) ∩ Ci is not empty.

Finally, we implement an iteration by solving the quadratic programming problem QP(i) for
each i ∈ {1, ..., 2m} and over the course of this loop we update the solution rsol if and only if the
new minimum value of the target function becomes smaller. It is also possible that for all i, the
set Ker(A) ∩Ci is empty, which implies that our general problem does not possess the solution
and the configuration of the actuators must be modified in order to satisfy the path-following
objective or the value of the desired resulting force Fd

B must be changed.

As for the time complexity of the subproblem QP (i) for each i, we can base our reasoning
on the paper [14] of Vavasis. In this paper the author discusses about the time complexity
of the quadratic programming algorithm. To be more precise, the author analyzes two cases:
convex optimization and non-convex optimization. As for each i, the subproblem QP (i) is a
convex optimization QP problem, then we can restrict ourselves only to the first case, discussed
in the paper of Vavarsis. According to the paper [14], the best-known time complexity for the
convex Quadratic Programming problem is based on the work provided by the paper [13] of
Renegar, which proposes a solution to improve the time complexity of the following Linear
Programming problem:

max
x

c · x

s.t. Bx ≥ k
(9)

where B is the matrix of size n×m and k ∈ Rn, x, c ∈ Rm. So for our case as the dimension of
the forces’ space n is either 3 or 6, the best-known time complexity for the convex Quadratic
Programming subproblem QP (i), which is based on the work provided by the paper [13] written
by Renegar, can be solved in O(m1/2L) iterations, where L is the number of digits required to
write (P, q,Gi, bi, A), with each iteration requiring O(m3) arithmetic operations. Henceforth,
the total time complexity of the subproblem QP (i) is O(m1/2Lm3) = O(m3.5L). Moreover,
in our case L is proportional to m2, so the total time complexity for the subproblem QP (i)
is O(m5.5). Finally, as we perform 2m iterations in order to solve each subproblem QP (i) for
i ∈ {1, ..., 2m}, the total time complexity of our algorithm is O(2mm5.5).

Moreover, we should remember that we are considering at the moment the CUBE system
upon which these solutions will apply and we know that that the number of actuators in this
system is m = 8 and even if we suppose that other group of extra actuators will be added to the

22



From overactuated to underactuated:
path-following algorithm for robotics
systems

CUBE system, the total number of actuators m will never be significant given the fact that in
the contrary case the path-following controller will require much more computations and the
construction and the maintenance of the system will be very costly. That is why even if the the-
oretical complexity of the process above is exponential, it will not be costly when put in practice.

In order to go further in the acceleration of the process above, it is useful to note that these
iterations, which exploit the QP solver, are independent as the convex sets Ci are all disjoint,
and thus, these iterations can be distributed between the multiple parallel processes available
on the machine. In other words, in order to accelerate the execution of our algorithm we can
use Parallel programming and all iterations of the loop will be executed independently on the
available processes.

4.3.1 Reactivity constraint

Apart from the saturation constraints on the actuators, we would like to satisfy the reactivity
constraints. In other words, what we want is to make the actuation forces produce the maximum
yield factor. It means that if we take a look at the figure 4, then the points of the reactivity
refer to the points, where the derivative of the graph becomes maximum in absolute value.
In our case, there will be two points of the reactivity on the left and the right of the vertical
y − axis and we will denote them F±

react. Henceforth, we can refer ourselves to the previous
section in order to satisfy the reactivity constraints. As we want the actuation forces, which are
exerted by the motors, to produce the maximum yield factor and as the saturation constraints
persist and they also must be satisfied, then we can formulate our problem in the same way as
it has already been done in the equation (1):

min
r

∥A+ · Fd
B + r − F±

react∥2

s.t. r ∈ J1 × ...× Jm

A · r = 0
(10)

The equation 10 will be resolved separately for F+
react and F−

react for a fixed Fd
B by Quadratic

Programming and only the solution (if a solution exists), which minimizes the objective function
the most, will be retained. The objective function in the equation above stays strictly convex
as in the previous section.

Let’s consider the equation 10 for F+
react and the corresponding problem will be called (10+). It

is useful to note that by applying the same reasoning as in the previous section, the solution to
the equation (4+) exists if and only if the set Ker(A)∩(J1 × . . .×Jm), over which the objective
function is minimized, is not empty. Then we can conclude that the solution to the equation
(10+) exists if and only if the saturation constraints can be satisfied, i.e. the equation 8 has
a solution. The same reasoning can be applied to the equation (10−). Henceforth, instead of
trying to satisfy only the saturation constraints we can try to resolve the equation 10 in order
to satisfy the saturation and reactivity constraints at the same time. This choice really depends
on the user, who can decide by keeping in mind his needs if the reactivity constraint is really
important for the path-following problem and if it is the case, then the user will try to solve
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directly the equation 10. Moreover, it can been seen easily that the resolution by Quadratic
Programming of the equation 10 has the same time and space complexity as the equation 8.

We can easily imagine that in reality that the path-following problem has constraints other
than reactivity and saturation, that we will need to satisfy. By taking into account the satura-
tion of the actuators, which will always persist whatever the problem, and by denoting Fopt the
force criteria of the considered constraint, which should be as near as possible to the actuation
forces, then we can formulate the problem, which we want to solve, in the following way:

min
r

∥A+ · Fd
B + r − Fopt∥2

s.t. r ∈ J1 × ...× Jm

A · r = 0
(11)

We can always apply the Quadratic Programming in order to solve the equation above and
proceed to the same reasoning explained in the previous sections.
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5 Conclusion
To sum up, we have analyzed the path-following motion control by considering both kinematic
and dynamic control laws. More and more researchers concentrate their efforts on this type
of motion control, because they believe that it will bring more efficient solutions and is sim-
pler to be exploited than the other two techniques: point stabilization and trajectory tracking.
Moreover, the redundant autonomous systems have been proved be useful for the completion
of several tasks at the same time. The notion of task priority, explained in the paper [11] of
Nakamura et al., can be exploited in order to profit from the redundancy of the system and
complete secondary tasks.

Moreover, the issue of the actuators’ saturation of an autonomous vehicle should not be ig-
nored given the fact that the saturation can cause the path-following controller to fail as the
input variables will not be able to satisfy the quantitative demand at some point of time. The
solutions have been brought to the generalization of actuation management in the robotic sys-
tems in 2D and 3D space, to the selection criteria of directions to which the path-following
controller should give priority in the first place and finally, to the satisfaction of the saturation
and reactivity constraints (and other constraints if the user deems it necessary to add them for
analysis).

In extend the areas of my research, I think it would be appropriate to dedicate more time
to the task priority notion, explained in the paper [11] of Nakamura et al., in order to develop
kinematic and dynamic models, which will guarantee the completion of the path-following task,
that will be the primary task, and the completion of other secondary tasks (for example, keep
the orientation of the surge force in direction to the fixed point in space). I would also like to
see the application of my solutions in the construction of the CUBE system, which is said to
be finished later this year and to be tested near the source of Lez also this year. I hope that
my solutions will make a good fit in the project Lez 2020 and will be put in practice by my
supervisor Lionel Lapierre.
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